A parallelogram PQSR has several key properties:
Opposite sides are parallel: PQ || SR and PS || QR. This is the defining characteristic of a parallelogram.
Opposite sides are equal in length: PQ = SR and PS = QR.
Opposite angles are equal: ∠P = ∠R and ∠Q = ∠S.
Consecutive angles are supplementary: ∠P + ∠Q = 180°, ∠Q + ∠R = 180°, ∠R + ∠S = 180°, and ∠S + ∠P = 180°. This means that their sum is 180 degrees.
Diagonals bisect each other: The diagonals PR and QS intersect at a point (let's call it O) such that PO = OR and QO = OS. However, the diagonals are not necessarily equal in length unless the parallelogram is a rectangle or a square.
Area: The area of a parallelogram is calculated as base × height, where the base is the length of one side and the height is the perpendicular distance between that side and its opposite parallel side.
To give more specific information about a parallelogram PQSR, we would need additional details, such as the lengths of its sides, the measures of its angles, or the coordinates of its vertices.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page